
Testing Report for

Sum Of Factors

Prepared by Samantha Superprogrammer

The Sum Of Factors program claims to do exactly what its name implies – to sum all of the factors of a

given input value. The program contract states that valid inputs are in the range 200 to 2,000,000.

The test suite initially contained the values 231 (because it was the exemplar in the contract) as well as

200 and 2,000,000 (because they were the limits of the input range.) Analysis of the problem suggests

that the following types of data might be of interest:

• 1, because the issue of “factoring” 1 is semantically tricky

• A prime number

• A product of exactly two primes (common in cryptography)

• A power of primes

• A product of two prime squares

• A product of two primes each greater than 200 (in case the lower input limit was a different kind

of limit)

Of these, the first is ruled out as it represents an improper input for this particular program. Thus, the

initial test suite – with anticipated answers was:

Input value Sum of Factors

231 384

200 465

2000000 4980405

733 734

481 (=37*13) 532

4913 (=17
3
) 5220

1030225 (= 5
2
*203

2
) 1539057

43931 (=223*197) 44352

The program was tested on each of these values the correct answer was returned in each case except

for 1,030,225. More testing was undertaken in this case. First, another exemplar was tested, and it

also produced an incorrect answer. Then a single perfect square was tested, and it too gave the wrong

answer. Several more perfect squares were tested and all produced incorrect results. A summary is

given in the table on the next page:

Input value Correct Answer Answer Given Difference

1030225 (= 5
2
*203

2
) 1539057 1540072 1015

20449 (=11
2
*13

2
) 24349 24482 143

289 (=17
2
) 307 324 17

10201 (= 101
2
) 10303 10404 101

537289 (=733
2
) 538023 538756 733

It is interesting to note that in each case, the difference in the two answers is exactly the square root of

the input number. This strongly suggests that the square root of a perfect square is being ‘double

counted’ in some way. This is either a bug in the program – or, if this is the desired behavior, an error

in the contract.

Finally, we note that other values, outside the range were tested. The contract specifies that no such

values will ever be given; therefore any behavior is acceptable in these circumstances. We tested

integers outside the range – including negative numbers, 0, 1, 199, and 2000001; decimal numbers and

even alphamerical strings. In each case, the program produced an error message in a dialog box and

continued gracefully.

